Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.773
Filtrar
2.
CNS Drugs ; 38(5): 315-331, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570412

RESUMEN

The concept of a 'microbiota-gut-brain axis' has recently emerged as an important player in the pathophysiology of Parkinson disease (PD), not least because of the reciprocal interaction between gut bacteria and medications. The gut microbiota can influence levodopa kinetics, and conversely, drugs administered for PD can influence gut microbiota composition. Through a two-step enzymatic pathway, gut microbes can decarboxylate levodopa to dopamine in the small intestine and then dehydroxylate it to m-tyramine, thus reducing availability. Inhibition of bacterial decarboxylation pathways could therefore represent a strategy to increase levodopa absorption. Other bacterial perturbations common in PD, such as small intestinal bacterial overgrowth and Helicobacter pylori infection, can also modulate levodopa metabolism, and eradication therapies may improve levodopa absorption. Interventions targeting the gut microbiota offer a novel opportunity to manage disabling motor complications and dopa-unresponsive symptoms. Mediterranean diet-induced changes in gut microbiota composition might improve a range of non-motor symptoms. Prebiotics can increase levels of short-chain fatty acid-producing bacteria and decrease pro-inflammatory species, with positive effects on clinical symptoms and levodopa kinetics. Different formulations of probiotics showed beneficial outcomes on constipation, with some of them improving dopamine levels; however, the most effective dosage and duration and long-term effects of these treatments remain unknown. Data from faecal microbiota transplantation studies are preliminary, but show encouraging trends towards improvement in both motor and non-motor outcomes.This article summarises the most up-to-date knowledge in pharmacomicrobiomics in PD, and discusses how the manipulation of gut microbiota represents a potential new therapeutic avenue for PD.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Microbioma Gastrointestinal/fisiología , Levodopa/farmacología , Dopamina
3.
BMC Biol ; 22(1): 76, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581018

RESUMEN

BACKGROUND: The gut microbiota, vital for host health, influences metabolism, immune function, and development. Understanding the dynamic processes of bacterial accumulation within the gut is crucial, as it is closely related to immune responses, antibiotic resistance, and colorectal cancer. We investigated Escherichia coli behavior and distribution in zebrafish larval intestines, focusing on the gut microenvironment. RESULTS: We discovered that E. coli spread was considerably suppressed within the intestinal folds, leading to a strong physical accumulation in the folds. Moreover, a higher concentration of E. coli on the dorsal side than on the ventral side was observed. Our in vitro microfluidic experiments and theoretical analysis revealed that the overall distribution of E. coli in the intestines was established by a combination of physical factor and bacterial taxis. CONCLUSIONS: Our findings provide valuable insight into how the intestinal microenvironment affects bacterial motility and accumulation, enhancing our understanding of the behavioral and ecological dynamics of the intestinal microbiota.


Asunto(s)
Microbioma Gastrointestinal , Intestinos , Animales , Intestinos/microbiología , Escherichia coli/fisiología , Factores Biológicos , Pez Cebra/fisiología , Microbioma Gastrointestinal/fisiología , Bacterias
4.
Mol Neurodegener ; 19(1): 35, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627829

RESUMEN

Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Humanos , Enfermedad de Alzheimer/metabolismo , Microbioma Gastrointestinal/fisiología , Metabolismo de los Lípidos , Progresión de la Enfermedad , Lípidos
5.
ACS Chem Neurosci ; 15(8): 1712-1727, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581382

RESUMEN

Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.


Asunto(s)
Encefalitis Japonesa , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Enfermedades Neuroinflamatorias , Microbioma Gastrointestinal/fisiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/microbiología , Microglía/efectos de los fármacos , Microglía/inmunología , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/microbiología , Encefalitis Japonesa/prevención & control , Encefalitis Japonesa/virología , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico , Virus de la Encefalitis Japonesa (Subgrupo)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Subgrupo)/inmunología , Virus de la Encefalitis Japonesa (Subgrupo)/patogenicidad , Análisis de Supervivencia , Quimiocinas/inmunología , Quimiocinas/metabolismo , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/metabolismo , Síndrome de Liberación de Citoquinas/prevención & control , Humanos , Femenino , Animales , Ratones , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/virología , Carga Viral/efectos de los fármacos , Factores de Tiempo
6.
Curr Opin Endocrinol Diabetes Obes ; 31(3): 122-130, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587099

RESUMEN

PURPOSE OF REVIEW: This review critically examines interconnected health domains like gut microbiome, bone health, interleukins, chronic periodontitis, and coronavirus disease 2019 (COVID-19), offering insights into fundamental mechanisms and clinical implications, contributing significantly to healthcare and biomedical research. RECENT FINDINGS: This review explores the relationship between gut microbiome and bone health, a growing area of study. It provides insights into skeletal integrity and potential therapeutic avenues. The review also examines interleukins, chronic periodontitis, and COVID-19, highlighting the complexity of viral susceptibility and immune responses. It highlights the importance of understanding genetic predispositions and immune dynamics in the context of disease outcomes. The review emphasizes experimental evidence and therapeutic strategies, aligning with evidence-based medicine and personalized interventions. This approach offers actionable insights for healthcare practitioners and researchers, paving the way for targeted therapeutic approaches and improved patient outcomes. SUMMARY: The implications of these findings for clinical practice and research underscore the importance of a multidisciplinary approach to healthcare that considers the complex interactions between genetics, immune responses, oral health, and systemic diseases. By leveraging advances in biomedical research, clinicians can optimize patient care and improve health outcomes across diverse patient populations.


Asunto(s)
Huesos , COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , COVID-19/inmunología , SARS-CoV-2/inmunología , Periodontitis Crónica/microbiología , Periodontitis Crónica/inmunología , Interleucinas
7.
BMC Microbiol ; 24(1): 131, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643098

RESUMEN

BACKGROUND: Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS: The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS: Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Calor , Animales , Ratones , Temperatura , Microbioma Gastrointestinal/fisiología , Frío , Adaptación Fisiológica/fisiología
8.
Braz J Med Biol Res ; 57: e13205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656071

RESUMEN

Acute diarrhea is the second leading cause of morbidity and mortality attributed to infections in children under five years of age worldwide, with 1.7 million annual estimated cases and more than 500,000 deaths. Although hydroelectrolytic replacement is the gold standard in treating diarrhea, it does not interfere with the restoration of the intestinal microbiota. Several studies have searched for an adequate alternative in restructuring intestinal homeostasis, finding that treatments based on probiotics, prebiotics, and synbiotics are effective, which made such treatments increasingly present in clinical practice by reducing illness duration with minimal side effects. However, there are still controversies regarding some unwanted reactions in patients. The diversity of strains and the peculiarities of the pathogens that cause diarrhea require further studies to develop effective protocols for prevention and treatment. Here, we provide a descriptive review of childhood diarrhea, emphasizing treatment with probiotics, prebiotics, and synbiotics.


Asunto(s)
Diarrea , Prebióticos , Probióticos , Simbióticos , Humanos , Probióticos/uso terapéutico , Simbióticos/administración & dosificación , Prebióticos/administración & dosificación , Diarrea/microbiología , Diarrea/terapia , Diarrea/prevención & control , Niño , Microbioma Gastrointestinal/fisiología , Preescolar
9.
Curr Opin Clin Nutr Metab Care ; 36(3): 134-147, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656809

RESUMEN

PURPOSE OF REVIEW: The analysis of microbiome in association with female health is today a "hot topic" with the main focus on microbes in the female reproductive tract. Nevertheless, recent studies are providing novel information of the possible influence of the gut microbiome on gynecological health outcomes, especially as we start to understand that the gut microbiome is an extended endocrine organ influencing female hormonal levels. This review summarizes the current knowledge of the gut microbes in association with gynecological health. RECENT FINDINGS: The gut microbiome has been associated with endometriosis, polycystic ovary syndrome, gynecological cancers, and infertility, although there is a lack of consistency and consensus among studies due to different study designs and protocols used, and the studies in general are underpowered. SUMMARY: The interconnection between the gut microbiome and reproductive health is complex and further research is warranted. The current knowledge in the field emphasizes the link between the microbiome and gynecological health outcomes, with high potential for novel diagnostic and treatment tools via modulation of the microenvironment.


Asunto(s)
Endometriosis , Microbioma Gastrointestinal , Síndrome del Ovario Poliquístico , Salud Reproductiva , Humanos , Femenino , Microbioma Gastrointestinal/fisiología , Endometriosis/microbiología , Síndrome del Ovario Poliquístico/microbiología , Genitales Femeninos/microbiología , Neoplasias de los Genitales Femeninos/microbiología , Infertilidad Femenina/microbiología , Enfermedades de los Genitales Femeninos/microbiología
10.
Transl Psychiatry ; 14(1): 195, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658547

RESUMEN

Lifestyle factors, especially exercise, impact the manifestation and progression of psychiatric and neurodegenerative disorders such as depression and Alzheimer's disease, mediated by changes in hippocampal neuroplasticity. The beneficial effects of exercise may be due to its promotion of adult hippocampal neurogenesis (AHN). Gut microbiota has also been showed to be altered in a variety of brain disorders, and disturbances of the microbiota have resulted in alterations in brain and behaviour. However, whether exercise can counteract the negative effects of altered gut microbiota on brain function remains under explored. To this end, chronic disruption of the gut microbiota was achieved using an antibiotic cocktail in rats that were sedentary or allowed voluntary access to running wheels. Sedentary rats with disrupted microbiota displayed impaired performance in hippocampal neurogenesis-dependent tasks: the modified spontaneous location recognition task and the novelty suppressed feeding test. Performance in the elevated plus maze was also impaired due to antibiotics treatment. These behaviours, and an antibiotics-induced reduction in AHN were attenuated by voluntary exercise. The effects were independent of changes in the hippocampal metabolome but were paralleled by caecal metabolomic changes. Taken together these data highlight the importance of the gut microbiota in AHN-dependent behaviours and demonstrate the power of lifestyle factors such as voluntary exercise to attenuate these changes.


Asunto(s)
Conducta Animal , Microbioma Gastrointestinal , Hipocampo , Neurogénesis , Condicionamiento Físico Animal , Animales , Microbioma Gastrointestinal/fisiología , Neurogénesis/fisiología , Condicionamiento Físico Animal/fisiología , Ratas , Masculino , Conducta Animal/fisiología , Antibacterianos/farmacología , Ratas Sprague-Dawley , Conducta Sedentaria
11.
PeerJ ; 12: e17270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650647

RESUMEN

Background: The appropriate sample handling for human fecal microbiota studies is essential to prevent changes in bacterial composition and quantities that could lead to misinterpretation of the data. Methods: This study firstly identified the potential effect of aerobic and anaerobic fecal sample collection and transport materials on microbiota and quantitative microbiota in healthy and fat-metabolic disorder Thai adults aged 23-43 years. We employed metagenomics followed by 16S rRNA gene sequencing and 16S rRNA gene qPCR, to analyze taxonomic composition, alpha diversity, beta diversity, bacterial quantification, Pearson's correlation with clinical factors for fat-metabolic disorder, and the microbial community and species potential metabolic functions. Results: Our study successfully obtained microbiota results in percent and quantitative compositions. Each sample exhibited quality sequences with a >99% Good's coverage index, and a relatively plateau rarefaction curve. Alpha diversity indices showed no statistical difference in percent and quantitative microbiota OTU richness and evenness, between aerobic and anaerobic sample transport materials. Obligate and facultative anaerobic species were analyzed and no statistical difference was observed. Supportively, the beta diversity analysis by non-metric multidimensional scale (NMDS) constructed using various beta diversity coefficients showed resembling microbiota community structures between aerobic and anaerobic sample transport groups (P = 0.86). On the other hand, the beta diversity could distinguish microbiota community structures between healthy and fat-metabolic disorder groups (P = 0.02), along with Pearson's correlated clinical parameters (i.e., age, liver stiffness, GGT, BMI, and TC), the significantly associated bacterial species and their microbial metabolic functions. For example, genera such as Ruminococcus and Bifidobacterium in healthy human gut provide functions in metabolisms of cofactors and vitamins, biosynthesis of secondary metabolites against gut pathogens, energy metabolisms, digestive system, and carbohydrate metabolism. These microbial functional characteristics were also predicted as healthy individual biomarkers by LEfSe scores. In conclusion, this study demonstrated that aerobic sample collection and transport (<48 h) did not statistically affect the microbiota and quantitative microbiota analyses in alpha and beta diversity measurements. The study also showed that the short-term aerobic sample collection and transport still allowed fecal microbiota differentiation between healthy and fat-metabolic disorder subjects, similar to anaerobic sample collection and transport. The core microbiota were analyzed, and the findings were consistent. Moreover, the microbiota-related metabolic potentials and bacterial species biomarkers in healthy and fat-metabolic disorder were suggested with statistical bioinformatics (i.e., Bacteroides plebeius).


Asunto(s)
Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Humanos , Adulto , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/genética , Heces/microbiología , Tailandia , Masculino , ARN Ribosómico 16S/genética , Femenino , Adulto Joven , Manejo de Especímenes/métodos , Anaerobiosis/fisiología , Aerobiosis , Metagenómica , Pueblos del Sudeste Asiático
12.
Sci Total Environ ; 927: 172391, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608899

RESUMEN

The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.


Asunto(s)
Ansiedad , Microbioma Gastrointestinal , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ondas de Radio/efectos adversos , Inflamasomas/metabolismo , Neuronas , Masculino , Conducta Animal/efectos de la radiación
14.
Nat Commun ; 15(1): 3343, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637580

RESUMEN

Pathogenic gut microbiota is responsible for a few debilitating gastrointestinal diseases. While the host immune cells do produce extracellular vesicles to counteract some deleterious effects of the microbiota, the extracellular vesicles are of insufficient doses and at unreliable exposure times. Here we use mechanical stimulation of hydrogel-embedded macrophage in a bioelectronic controller that on demand boost production of up to 20 times of therapeutic extracellular vesicles to ameliorate the microbes' deleterious effects in vivo. Our miniaturized wireless bioelectronic system termed inducible mechanical activation for in-situ and sustainable generating extracellular vesicles (iMASSAGE), leverages on wireless electronics and responsive hydrogel to impose mechanical forces on macrophages to produce extracellular vesicles that rectify gut microbiome dysbiosis and ameliorate colitis. This in vivo controllable extracellular vesicles-produced system holds promise as platform to treat various other diseases.


Asunto(s)
Colitis , Vesículas Extracelulares , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiología , Hidrogeles/farmacología , Disbiosis
15.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 326-331, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38538365

RESUMEN

The interaction of gut microbiota and its metabolites with the host not only plays an important role in maintaining gut homeostasis and host health, but also is a key link in responding to pathogen infections. A thorough understanding of the changes in gut microbiota and its metabolites during infection, as well as their role and mechanism in host defense against infection, is helpful to guide anti-infection treatment. This review focuses on the role of gut microbiota and their metabolites in host defense against bacterial, fungal, and viral infections, and reveals that they can exert anti-infection effects through resistance mechanisms (inducing antimicrobial substances, training immunity, inhibiting pathogen respiration, directly neutralizing pathogens, immune regulation) and tolerance mechanisms (altering energy metabolism patterns of microbiota, cell proliferation and tissue damage repair, maintaining physiological signal transduction in extraintestinal organs, inflammation regulation, maintaining the integrity of the intestinal barrier), and also summarizes measures to regulate gut microbiota against pathogen infections, in order to provide more ideas for novel anti-infection prevention and treatment strategies targeting gut microbiota and its metabolites.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiología , Inflamación , Bacterias
16.
Ren Fail ; 46(1): 2328320, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38469667

RESUMEN

OBJECTIVES: Obesity can induce dysbiosis in the gut microbiota and is considered a separate risk factor for kidney function decline. Nonetheless, the precise function of intestinal microorganisms in facilitating the connection between obesity and kidney function decline remains uncertain. Hence, the objective of this study was to investigate the alterations in the gut microbiota composition that take place during obesity and their correlations with renal function utilizing a rat model. METHODS: For 20 weeks, 25 Sprague-Dawley rats were fed either a high-fat diet (HFD) or a normal-fat normal diet (ND). Physiological indices, peripheral plasma, kidney tissue, and colon contents were collected for comparison between groups. Metagenomic analysis of intestinal flora was performed. RESULTS: The HFD group demonstrated significantly increased levels of creatinine and urea nitrogen in the peripheral blood. Additionally, the HFD rats exhibited a significantly larger glomerular diameter compared to the ND group, accompanied by the presence of glomerulosclerosis, tubular vacuolar transformation, and other pathological changes in certain glomeruli. Metagenomics analysis revealed a notable rise in the prevalence of the Firmicutes phylum within the HFD group, primarily comprising the Rumenococcus genus. Functional analysis indicated that the gut microbiota in the HFD group primarily correlated with infectious diseases, signal transduction, and signaling molecules and interactions. CONCLUSIONS: This study provides evidence that the consumption of a HFD induces modifications in the composition and functionality of the gut microbiome in rats, which may serve as a potential mechanism underlying the relationship between obesity and the progression of kidney function decline.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Renales , Ratas , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Ratas Sprague-Dawley , Obesidad/complicaciones , Dieta Alta en Grasa/efectos adversos , Enfermedades Renales/complicaciones , Riñón , Ratones Endogámicos C57BL
17.
NPJ Biofilms Microbiomes ; 10(1): 22, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480743

RESUMEN

Gut microbiota rearrangement induced by cold temperature is crucial for browning in murine white adipose tissue. This study provides evidence that DUSP6, a host factor, plays a critical role in regulating cold-induced gut microbiota rearrangement. When exposed to cold, the downregulation of intestinal DUSP6 increased the capacity of gut microbiota to produce ursodeoxycholic acid (UDCA). The DUSP6-UDCA axis is essential for driving Lachnospiraceae expansion in the cold microbiota. In mice experiencing cold-room temperature (CR) transitions, prolonged DUSP6 inhibition via the DUSP6 inhibitor (E/Z)-BCI maintained increased cecal UDCA levels and cold-like microbiota networks. By analyzing DUSP6-regulated microbiota dynamics in cold-exposed mice, we identified Marvinbryantia as a genus whose abundance increased in response to cold exposure. When inoculated with human-origin Marvinbryantia formatexigens, germ-free recipient mice exhibited significantly enhanced browning phenotypes in white adipose tissue. Moreover, M. formatexigens secreted the methylated amino acid Nε-methyl-L-lysine, an enriched cecal metabolite in Dusp6 knockout mice that reduces adiposity and ameliorates nonalcoholic steatohepatitis in mice. Our work revealed that host-microbiota coadaptation to cold environments is essential for regulating the browning-promoting gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Animales , Humanos , Ratones , Adiposidad , Frío , Fosfatasas de Especificidad Dual/metabolismo , Microbioma Gastrointestinal/fisiología , Obesidad
18.
J Parkinsons Dis ; 14(2): 227-244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427502

RESUMEN

Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/patología , Membrana Externa Bacteriana/patología , Inflamación/complicaciones , Microbioma Gastrointestinal/fisiología , Mamíferos
19.
Sci Rep ; 14(1): 7376, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548767

RESUMEN

CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by global developmental delay, early-onset seizures, intellectual disability, visual and motor impairments. Unlike Rett Syndrome (RTT), CDD lacks a clear regression period. Patients with CDD frequently encounter gastrointestinal (GI) disturbances and exhibit signs of subclinical immune dysregulation. However, the underlying causes of these conditions remain elusive. Emerging studies indicate a potential connection between neurological disorders and gut microbiota, an area completely unexplored in CDD. We conducted a pioneering study, analyzing fecal microbiota composition in individuals with CDD (n = 17) and their healthy relatives (n = 17). Notably, differences in intestinal bacterial diversity and composition were identified in CDD patients. In particular, at genus level, CDD microbial communities were characterized by an increase in the relative abundance of Clostridium_AQ, Eggerthella, Streptococcus, and Erysipelatoclostridium, and by a decrease in Eubacterium, Dorea, Odoribacter, Intestinomonas, and Gemmiger, pointing toward a dysbiotic profile. We further investigated microbiota changes based on the severity of GI issues, seizure frequency, sleep disorders, food intake type, impairment in neuro-behavioral features and ambulation capacity. Enrichment in Lachnoclostridium and Enterobacteriaceae was observed in the microbiota of patients with more severe GI symptoms, while Clostridiaceae, Peptostreptococcaceae, Coriobacteriaceae, Erysipelotrichaceae, Christensenellaceae, and Ruminococcaceae were enriched in patients experiencing daily epileptic seizures. Our findings suggest a potential connection between CDD, microbiota and symptom severity. This study marks the first exploration of the gut-microbiota-brain axis in subjects with CDD. It adds to the growing body of research emphasizing the role of the gut microbiota in neurodevelopmental disorders and opens doors to potential interventions that target intestinal microbes with the aim of improving the lives of patients with CDD.


Asunto(s)
Síndromes Epilépticos , Microbioma Gastrointestinal , Síndrome de Rett , Espasmos Infantiles , Humanos , Microbioma Gastrointestinal/fisiología , Síndrome de Rett/genética , Convulsiones , Proteínas Serina-Treonina Quinasas
20.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542216

RESUMEN

Dysregulation of the gut microbiota and their metabolites is involved in the pathogenic process of intestinal diseases, and several pieces of evidence within the current literature have also highlighted a possible connection between the gut microbiota and the unfolding of inflammatory pathologies of the joints. This dysregulation is defined as the "gut-joint axis" and is based on the joint-gut interaction. It is widely recognized that the microbiota of the gut produce a variety of compounds, including enzymes, short-chain fatty acids, and metabolites. As a consequence, these proinflammatory compounds that bacteria produce, such as that of lipopolysaccharide, move from the "leaky gut" to the bloodstream, thereby leading to systemic inflammation which then reaches the joints, with consequences such as osteoarthritis, rheumatoid arthritis, and spondylarthritis. In this state-of-the-art research, the authors describe the connections between gut dysbiosis and osteoarthritis, rheumatoid arthritis, and spondylarthritis. Moreover, the diagnostic tools, outcome measures, and treatment options are elucidated. There is accumulating proof suggesting that the microbiota of the gut play an important part not only in immune-mediated, metabolic, and neurological illnesses but also in inflammatory joints. According to the authors, future studies should concentrate on developing innovative microbiota-targeted treatments and their effects on joint pathology as well as on organizing screening protocols to predict the onset of inflammatory joint disease based on gut dysbiosis.


Asunto(s)
Artritis Reumatoide , Microbioma Gastrointestinal , Osteoartritis , Espondiloartritis , Humanos , Microbioma Gastrointestinal/fisiología , Disbiosis/microbiología , Artritis Reumatoide/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...